Characterization of temperature dependent mechanical behavior of cartilage.

نویسندگان

  • YongSeok Chae
  • Guillermo Aguilar
  • Enrique J Lavernia
  • Brian J F Wong
چکیده

BACKGROUND AND OBJECTIVES Few quantitative studies have investigated the temperature dependent viscoelastic properties of cartilage tissue. Cartilage softens and can be reshaped when heated using laser, RF, or contact heating sources. The objectives of this study were to: (1) measure temperature dependent flexural storage moduli and mechanical relaxation in cartilage, (2) determine the impact of tissue water content and orientation on these mechanical properties, and (3) use these measurements to estimate the activation energy associated with the mechanical relaxation process. STUDY DESIGN/MATERIALS AND METHODS Porcine nasal septal cartilage specimens (30 x 10 x 2 mm) were deformed using a single cantilever arrangement in a dynamic thermomechanical analyzer. Stress relaxation measurements were made at discrete temperatures ranging from 25 to 70 degrees C in response to cyclic deformation (within the linear viscoelastic region). The time and temperature dependent behavior of cartilage was measured using frequency multiplexing techniques (10-64 Hz), and these results were used to estimate the activation energy for the phase change using the Williams-Landel-Ferry (WLF) equation and the Arrhenius kinetic equation. In addition, the effect of tissue orientation was examined with specimens oriented in both transverse and longitudinal directions at room temperature. RESULTS The storage moduli of porcine cartilage decreased with increasing temperature, and a critical change in mechanical properties was observed between 58 and 60 degrees C with a reduction in the storage modulus by 85-90%. The shift of the stress relaxation behavior from viscoelastic solid to viscoelastic liquid was observed between 50 and 57 degrees C and likely corresponds to the transition temperature region in which structural changes in the tissue occur. The storage moduli for transverse and longitudinally oriented specimens were 19-22 and 14-16 MPa, respectively at ambient temperature. Reducing the water content (<10% mass loss) by allowing it to dry under ambient conditions resulted in reduction in the storage modulus by 31-36%. The activation energy associated with the mechanical relaxation of cartilage was 147 kJ/mole at 60 degrees C. This value was calculated by measuring stress-strain relationship under conditions where linear viscoelastic behavior was observed (0.09-0.15% of strain) within the transition temperature region (58-60 degrees C). CONCLUSIONS The anisotropic mechanical behavior of cartilage was quantitatively analyzed in the transversely and longitudinally oriented specimens. Viscoelastic behavior appeared to be strongly dependent on the water content. Using empirically determined estimates of the transition zone temperature range accompanying stress relaxation, the activation energy for stress relaxation was calculated using time and temperature superposition theory and WLF equation. Further investigation of the molecular changes, which occur during laser irradiation, may assist in understanding the thermal and mechanical behavior of cartilage and how the reshaping process might to be optimized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel study of temperature effects on the viscoelastic behavior of articular cartilage

This paper presents a new approach to study the effects of temperature on the poroelastic and viscoelastic behavior of articular cartilage. Biphasic solid-fluid mixture theory is applied to study the poro-mechancial behavior of articular cartilage in a fully saturated state. The balance of linear momentum, mass, and energy are considered to describe deformation of the solid skeleton, pore fluid...

متن کامل

Effect of Temperature Dependency on Thermoelastic Behavior of Rotating Variable Thickness FGM Cantilever Beam

Thermoelastic behavior of temperature-dependent (TD) and independent (TID) functionally graded variable thickness cantilever beam subjected to mechanical and thermal loadings is studied based on shear deformation theory using a semi-analytical method. Loading is composed of a transverse distributed force, a longitudinal distributed temperature field due to steady-state heat conduction from root...

متن کامل

Intrinsic viscoelasticity increases temperature in knee cartilage under physiological loading.

Metabolism of proteoglycans and hyaluronic acid has been shown to be temperature-dependent in cartilage explants, with optimal anabolic effects between 36°C and 38°C. At rest, the temperature of human knee has a value of around 33°C. We aim to show in this study that viscoelastic properties of healthy human cartilage allow its temperature to reach those optimal temperatures during physiological...

متن کامل

Synthesis and Characterization of Biodegradable Hemostat Gelatin Sponge for Surgery Application

     Production and characterization of soft cross-linked gelatin sponge by using glutaraldehyde for blood hemostasis application, is the goal of this study. Biodegradable hydrogels were prepared through crosslinking of gelatin with glutaraldehyde followed by freeze drying. The effects of gelatin concentration, amount of crosslink agent and freeze drying temperature on mechanical properties and...

متن کامل

Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli Beams with Temperature-dependent Properties

Thermal buckling behavior of functionally graded Euler-Bernoulli beams in thermal conditions is investigated analytically. The beam with material and thermal properties dependent on the temperature and position is considered. Based on the transformed-section method, the functionally graded beam is considered as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2003